Retinoids and related compounds. Part 19. ${ }^{1}$ Syntheses of 9 E - and $9 Z$-locked retinoic acid analogues and their transcriptional activities as ligands for retinoic acid receptors and retinoid X receptors

Y uko K atsuta, Y ukiko A oyama, Hisa O sone, A kimori W ada and M asayoshi Ito*

K obe P harmaceutical U niversity, 4-19-1 M otoyamakita-machi, H igashinada-ku, K obe 658, J apan

Abstract

N ovel retinoic acid (R A) analogues, $9 E$-locked-R A 3 and $9 Z$-locked R A 4, have been synthesized in order to prohibit geometrical isomerization at the C (9)-C (10) double bond when these ligands interact with the retinoic acid receptor (RAR) and retinoid X receptor (R XR). Transcriptional activities of these analogues for RAR and RXR are also described.

Introduction

Retinoic acid (RA) is a derivative of vitamin A which plays a key role in vertebrate vitamin A actions including proliferation, differentiation, growth and development, apart from those actions associated with vision. ${ }^{2}$ R ecently, receptors for RA have been identified as important members of the steroid/thyroid nuclear receptor superfamily, which act as ligand-dependent transcription factors. These receptors have been classified into two types, the retinoic acid receptors (RARs) ${ }^{3}$ and the retinoid X receptors (RXRs), ${ }^{4}$ and both have three kinds of subtypes (α, β and γ) respectively. The difference in these two receptors is due to the stereochemistry of the signalling molecules. Thus, the ligand of RARs is all-E-RA 1 and that of RXRs is $9 Z-R A$ $2,{ }^{5}$ respectively. Interestingly, $9 Z-R A 2$ is also capable of binding directly to RARs, and their complexes have also been active in the regulation of genetranscription. This implies that, unlike all-E-RA 1, 9Z-RA 2 is a biologically active ligand for both members of the RAR and RXR subfamilies. In addition, it is suggested that the isomerization of retinoids is involved in controlling signal-transduction pathways. A number of derivatives of RA have hitherto been synthesized and their transcriptional activities have been investigated. The structure of most analogues prepared previously was aromatic and seemed to be rather different from RA; therefore, a few of them behaved as agonists or antagonists only for RAR s. ${ }^{6}$ F urther, RA is known to isomerize around the double bonds rapidly in vivo. Hence we prepared locked RA analogues 3 and 4, whose C(9)-C(10) double bonds are prevented from isomerizing, to investigate whether these enzyme analogues bind the receptors and exhibit the transcriptional activities. H ere we describe a full account of the syntheses of the RA analogues $\mathbf{3}$ and $\mathbf{4}$ which are reported briefly in the previous communication.?

Results and discussion

Synthesis of $9 E$-locked RA 3 (Scheme 1)
Our first attempt to prepare 9 E -locked trienone $\mathbf{5}$ according to A lbeck's method ${ }^{8}$ was unsuccessful due to the low yield in the Wittig reaction between the triphenylphosphonium bromide of β-cyclocitrol and 3 -formylcyclohex-1-enone. Hence trienone 5 was synthesized by our original procedure as shown in Scheme 1. Dione 7, derived from the reaction of the lithium salt of dithiane 6^{9} with 5 -chloropentan-2-one ethylene ketal (Aldrich) and subsequent deprotection of the thioketal and ketal groups (57% in 3 steps), was easily cyclized ${ }^{10}$ in the presence of MeONa to afford trienone 5 (100%). Condensation of the trienone 5 with the C_{5}-phosphonate did not proceed and the desired retinoate analogue was not obtained. Therefore, trienone $\mathbf{5}$ was converted to the retinoate analogue by stepwise elongation of the side-chain. Condensation of the trienone 5 with propan-2-one N, N-dimethylhydrazone in the presence of lithium diisopropylamide (LDA) afforded a mixture ($1: 1$ ratio) of tetraenones 8 and 9 in 72% yield after mild deprotection. ${ }^{11}$ The mixture was separated by low-pressure column chromatography (LPCC) and these structures were confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy; the 11Z-geometry was identified from the downfield shift of the $10-\mathrm{H}$ signal ($\delta 7.55$) in compound 9 in comparison with that ($\delta 5.98$ or 6.02) in isomer 8 and the 11Egeometry from the downfield shift of the 11a- H_{2} signal ($\delta 2.94$) in compound 8 compared with that ($\delta 2.38$) in isomer 9 , both owing to anisotropic effects of the ketone groups. Peterson olefination (92\%) of 11E-isomer $\mathbf{8}$ with ethyl trimethylsilyl acetate followed by preparative high-pressure liquid chromatography (PH PLC) gave $13 Z$-isomer 10 and all-E-isomer 11 of the retinoate analogues in a 1:1 ratio. These structures were confirmed on the basis of ${ }^{1} \mathrm{H}$ N M R spectroscopy data; the $12-\mathrm{H}$ signal (δ 6.93) in compound 10 was observed downfield in comparison with that ($\delta 5.79$) in isomer 11. A ssignment of the ${ }^{13} \mathrm{C}$ NMR data of isomers $\mathbf{1 0}$ and $\mathbf{1 1}$ was performed by comparison with those of the known ethyl retinoates ${ }^{12}$ and by ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ heteronuclear shift-correlation (HETCOR) experiments, and complete assignment of these ${ }^{1} \mathrm{H}$ NM R data was obtained by 2D homonuclear chemical-shift-correlation (COSY) experiments. These retinoate analogues were carefully hydrolysed to RA analogues 12 and 3, respectively. δ-Values of the olefinic protons in the retinoates and the RAs (Table 1) show that no geometrical isomerization occurred during the final hydrolysis.

Synthesis of $9 Z$-locked RA 4 (Scheme 2)

$9 Z$-Locked trienone 16 was synthesized by a modified procedure used for the preparation of $11 Z$-locked retinal. ${ }^{13}$ A ldol

6

11E-8 (more polar)

11 Z-9
(less polar)

Scheme 1 Reagents and conditions: i, BuLi, 5-chloropentan-2-one ethylene ketal, $\mathrm{THF},-78^{\circ} \mathrm{C}$; ii, $\mathrm{HgO}, \mathrm{HgCl}_{2}, 97 \% \mathrm{MeOH}, \mathrm{rt}$; iii, pTsOH , acetone, rt (57%); iv, M eON a, THF, rt (100%); v, LDA, M é ${ }_{2}$ N$\mathrm{N}=\mathrm{CM} \mathrm{e}_{2}, \mathrm{THF}$, rt; vi, A cOH-THF-water-N aOA c (5:2:2:1), rt (72\% [94\%]); vii, LPCC; viii, LDA , M e $3_{3} \mathrm{SiCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ (92%); ix, PH PLC (in the dark); $x, 25 \% \mathrm{NaOH}, \mathrm{EtOH}, 50^{\circ} \mathrm{C}(92 \%, 81 \%)$

Table 1 U V-VIS and ${ }^{1}$ H N M R data for 9E-locked retinoids

UV-VIS	$\lambda_{\text {max }} / \mathrm{nm}$	$\frac{13 Z-10}{358}$	$\frac{\text { A II-E-11 }}{355}$	$\frac{13 Z-12^{\mathrm{a}}}{345,246}$	$\frac{A l l-E-3^{a}}{353}$
${ }^{1} \mathrm{H}$ N M R	$1,1-\mathrm{M} \mathrm{C}_{2}$	1.00	1.01	1.01	1.01
(200 M Hz)	$5-\mathrm{Me}$	1.69	1.70	1.70	1.70
$\left(\delta, \mathrm{CDCl}_{3}\right)$	13-M e	2.10	2.29	2.13	2.31
	7-H	6.21	6.24	6.23	6.26
	8-H	6.07	6.07	6.10	6.09
	10-H	6.17	6.04	6.18	6.05
	12-H	6.93	5.79	6.90	5.82
	14-H	5.61	5.72	5.64	5.75

${ }^{\text {a }} \mathrm{N}$ o signal for the carboxy proton was observed.
condensation between β-cyclocitral 13^{14} and easily prepared 3-(1-methylpropoxy)cyclohex-2-enone ${ }^{15}$ afforded hydroxy ketone 14. A fter addition of methyllithium to ketone 14, the

16

15

(less polar)

Scheme 2 Reagents and conditions: i, 3-(1-methylpropoxy)cyclohex-2enone, LDA , THF, $-78{ }^{\circ} \mathrm{C}(61 \%) ; \mathrm{ii}, \mathrm{M} \mathrm{eLi}, \mathrm{THF},-78$ to $0{ }^{\circ} \mathrm{C}$; iii, 15% $\mathrm{H}_{2} \mathrm{SO}_{4}$, rt (60%); iv, $\mathrm{AC}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt (83%); v, DBU, toluene, reflux (83\%); vi, LDA, M en N N = CM e $\mathrm{C}_{2}, \mathrm{THF}$, rt; vii, AcOH THF -water-A cON a (5:2:2:1), rt (41\% [57\%]); viii, PH PLC; ix, LDA, $\mathrm{M}_{3} \mathrm{SiCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{THF},-78^{\circ} \mathrm{C}$ (100\%); x, PHPLC (in the dark); xi, $25 \% \mathrm{NaOH}, \mathrm{EtOH}, 50^{\circ} \mathrm{C}(92 \%, 100 \%)$

Table 2 U V-VIS and ${ }^{1}$ H N M R data for 9Z-locked retinoids

		$9 Z, 13 Z-19$	$9 Z-20$	$9 Z, 13 Z-21^{\text {a }}$	$9 Z-4^{\mathrm{a}}$
U V-VIS	$\lambda_{\text {max }} / \mathrm{nm}$	348	342	335	334,250
1 H N M R	$1,1-\mathrm{M} \mathrm{e}_{2}$	0.95	0.96	0.95	0.96
$\left(200 \mathrm{M} \mathrm{Hz}^{2}\right)$	$5-\mathrm{M} \mathrm{e}$	1.46	1.46	1.46	1.47
$\left(\delta, \mathrm{CDCl}_{3}\right)$	$9-\mathrm{M} \mathrm{e}$	1.96	1.97	1.97	1.98
	$13-\mathrm{Me}$	2.07	2.28	2.11	2.30
	$7-\mathrm{H}$	6.02	6.04	6.05	6.06
	$10-\mathrm{H}$	6.11	5.97	6.11	5.98
	$12-\mathrm{H}$	6.89	5.76	6.87	5.79
	$14-\mathrm{H}$	5.61	5.68	5.63	5.72

${ }^{a} \mathrm{~N}$ o signal for the carboxy proton was observed.
resulting diol was treated with acid to give compound $\mathbf{1 5}$ which, by acetylation and subsequent elimination (1,8-diazabicyclo-[5.4.0]undec-7-ene, DBU) was converted to 7E-trienone 16 exclusively. The stereostructure of trienone 16 was confirmed by a nuclear Overhauser and exchange spectroscopy (NOESY)

16
$\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 296 \quad \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 321$
$\delta 1.02(\mathrm{br} \mathrm{s})$

7Z- β-Ionylidene acetaldehyde
$\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 272(\varepsilon 14800)$
313 (ε 9180)

Fig. 1
experiment (observed crosspeak between 7-H and 9-M e). The broad singlet at $\delta 0.97\left(1,1-\mathrm{Me}_{2}\right)$ indicates that rotational barriers exist in the two rings in trienone $\mathbf{1 6}$ and hence the twisted $6 s$-cis conformation is consistent with the unusual high-field shift of the $5-\mathrm{Me}$ group. In such a conformation, the $5-\mathrm{Me}$ group is in the shielding cone of the $C(7)-C(8)$ double bond and similar phenomena were found in 7 Z -retinoids ${ }^{16}$ (Fig. 1). The significantly shorter absorption maximum (296 nm) of trienone 16 than that of $9 Z-\beta$-ionylideneacetaldehyde (321 nm) also revealed this highly twisted 6 s -cis conformation (Fig. 1). Final transformation of trienone $\mathbf{1 6}$ into $9 Z$-locked RAs was achieved by means of the route used for $9 E$-locked RAs $\mathbf{1 2}$ and 3. Their ${ }^{1} H$ NM R data in Table 2 show that no geometrical isomerization occurred during the final hydrolysis.

Transcriptional activities of 9E-and 9Z-locked R A s for RAR and RXR

Transcriptional activities of synthesized RA analogues 3, 12, 4 and $\mathbf{2 1}$ were compared with those of all-E-RA 1 and $9 Z-R A 2$ by chloramphenicol acetyltransferase (CAT) assay. All analogues bound to both mRAR α and $m R \times R \alpha$, and had activities which weresignificant but weaker than those of all-E-RA 1 and $9 Z-R A 2(3 ; 1 / 10$ of 1 or $\mathbf{2 : 1 2 , 4} 4$ and $21 ; 1 / 100$ of 1 or 2$)$. The results suggest that the synthesized analogues exhibited agonistic actions towards both mRAR α and $m R X R \alpha$ receptors, but it was supposed that the artificial 6 -membered ring hindered the interaction between ligands and receptors.

Experimental

M ps are uncorrected. Ether refers to diethyl ether and hexane to n-hexane. BuLi was used as a solution in hexane. UV-VIS spectra were recorded on a JA SCO U best-55 instrument and IR or FT-IR spectra on a Shimadzu IR-27G or Shimadzu FT-IR 4200 spectrometer. ${ }^{1} \mathrm{H}$ NM R spectra at 60, 200, 300 or 500 MHz were measured on a JOEL JNM-PMX 60, a Varian Gemini-200, a Varian Gemini-300 or a Varian VX R-500 superconducting FT-NMR spectrometer using chloroform (δ 7.25) as internal reference and ${ }^{13} \mathrm{C} N \mathrm{MR}$ spectra at 75 M Hz or 125 MHz were measured on a Varian Gemini-300 or a Varian VXR-500 spectrometer. M ass spectra were determined on a Hitachi M-4100 doublefocusing GC mass spectrometer. Column chromatography (CC) was performed on silica gel

M erck Art. 7734. LPCC was conducted on a Yamazen Low Pressure Liquid Chromatography System using a Lobar M erck LiChroprep Si-60 column. Preparative H PLC was conducted on a Shimadzu LC-10A S instrument with a Shimadzu UV-VIS detector, SPD-10A, using a M erck LiChrosorb Si-60 $(7 \mu \mathrm{~m}), 1.0 \times 25 \mathrm{~cm}$ column. U nless otherwise stated, solvent extracts were dried over anhydrous sodium sulfate and all operations were carried out under nitrogen or argon. The extract or the filtrate was concentrated under reduced pressure at $<30^{\circ} \mathrm{C}$ using a rotary evaporator. N M R assignments follow the retinoic acid numbering system.

Synthesis of 9E-locked RA 3. (E)-8-(2,6,6-T rimethylcyclohex-1-enyl)oct-7-ene-2,6-dione 7
To a solution of the dithiane $6(2.0 \mathrm{~g}, 7.46 \mathrm{mmol})$ in dry tetrahydrofuran (THF) ($20 \mathrm{~cm}^{3}$) was added a solution of BuLi ($1.70 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 4.83 \mathrm{~cm}^{3}, 8.21 \mathrm{mmol}$) in hexane at $-78^{\circ} \mathrm{C}$. The mixture was stirred at room temperature (rt) for 1 h and 5 -chloropentan-2-one ethylene ketal ($1.35 \mathrm{~cm}^{3}, 8.96 \mathrm{mmol}$) was then added dropwise at $-78^{\circ} \mathrm{C}$. A fter being stirred at rt for 3 h , the reaction mixture was quenched by addition of water. A fter evaporation off of the THF, the residue was extracted with ether. The extract was washed with brine, dried and evaporated to give an oil, which was dissolved with 97% methanol $\left(100 \mathrm{~cm}^{3}\right) . \mathrm{H} \mathrm{gCl}_{2}(8.12 \mathrm{~g}, 29.9 \mathrm{mmol})$ and $\mathrm{HgO}(4.85 \mathrm{~g}, 22.4$ mmol) were added to this solution and the reaction mixture was stirred at rt for 15 min . Evaporation off of the methanol gave a residue, which was dissolved in ether and the solution was filtered through Celite. The filtrate was washed with brine, dried and evaporated to afford a residue, which was dissolved with acetone ($50 \mathrm{~cm}^{3}$). To the solution was added toluene-p-sulfonic acid ($\mathrm{TSOH} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) ($142 \mathrm{mg}, 0.75 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at rt for 1 h before being neutralized by the addition of saturated aq. NaHCO_{3} and the acetone was evaporated off to give a residue, which was extracted with ether. The extract was washed with brine, dried and evaporated to give an oil, which was purified by CC (A cO Et-hexane, 1:9). This afforded the title compound 7 ($1.11 \mathrm{~g}, 57 \%$) as an oil (Found: C, 77.66; H, 9.71\%; M^{+}, 262.1915. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C, 77.82; H, 9.99\%; M, 262.1934); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1712$ (nonconj. C=O), 1657 (conj. $\mathrm{C}=0$) and 1603 ($\mathrm{C}=\mathrm{C}$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 295$ and 219sh; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.04$ (6 H, s, gem-M e), 1.74 (3 H, s, 5-M e), 1.89 (2 H , quin, J 7, 9b$\left.\mathrm{H}_{2}\right), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.50 and 2.59 (each 2 H , each t, J 7 , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COM}$ e), $6.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5,8-\mathrm{H}$) and $7.30(1 \mathrm{H}$, d, J 16.5, $7-\mathrm{H}$).

(E)-3-[2-(2,6,6-T rimethylcyclohex-1-enyl)ethenyl]cyclohex-2-

enone 5

To a solution of dione $7(1.10 \mathrm{~g}, 4.20 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ cm^{3}) was added dropwise a solution of $\mathrm{NaOM} \mathrm{e}(261 \mathrm{mg}, 4.83$ $\mathrm{mmol})$ in methanol $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. A fter being stirred at rt for 3 h , the reaction mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried and evaporated. The residue was purified by CC (A cOEt-hexane, $1: 4)$ to give the title compound $5(1.02 \mathrm{~g}, 100 \%)$ as an oil, $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1651(\mathrm{C}=0)$ and $1610(\mathrm{C}=\mathrm{C}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ 322 and 271; $\left.\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl})_{3}\right) 1.02(6 \mathrm{H}, \mathrm{s}$, gem-M e), 1.70 $(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 2.41 and 2.51 (each 2 H , each t-like, J 6.5 and 6 , $9 \mathrm{a}-\mathrm{H}_{2}$ and $11 \mathrm{a}-\mathrm{H}_{2}$), $5.90(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,8-\mathrm{H})$ and $6.64\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,7-\mathrm{H}\right.$) (Found: $\mathrm{M}^{+}, 244.1833 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}$ requires M, 244.1826).

Propan-2-one N, N-dimethylhydrazone ${ }^{17}$

A mixture of acetone ($19.7 \mathrm{~g}, 0.34 \mathrm{~mol}$), N, N-dimethylhydrazine ($10 \mathrm{~g}, 0.17 \mathrm{~mol}$) and benzene ($100 \mathrm{~cm}^{3}$) was refluxed for 1 h using a D ean-Stark separator and was then distilled to give a solution of the title compound in benzene ($50 \% \mathrm{w} / \mathrm{w}$, the concentration was determined by $\left.{ }^{1} \mathrm{H} \mathrm{NMR}\right)$; $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 1.92 ($6 \mathrm{H}, \mathrm{d}, \mathrm{J} 2, \mathrm{CM} \mathrm{e}_{2}$), $2.41(6 \mathrm{H}, \mathrm{s}, \mathrm{NM} \mathrm{E} 2$) and $7.25(6$ H, s, benzene).

($\mathbf{E}, \mathrm{E} / \mathbf{Z}$)-3- β-[2-(2,6,6-T rimethylcyclohex-2-enyl)ethenyl]cyclo-hex-2-enylidene \}propan-2-one 8 and 9

To a solution of LDA (8.20 mmol , prepared from $1.15 \mathrm{~cm}^{3}$ of diisopropylamine and $4.82 \mathrm{~cm}^{3}$ of $1.70 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{BuLi}$) in dry THF ($8 \mathrm{~cm}^{3}$) was added a solution of propan-2-one N, N dimethylhydrazone ($50 \% \mathrm{w} / \mathrm{w} ; 1.46 \mathrm{~g}, 8.20 \mathrm{mmol}$) in benzene at $0^{\circ} \mathrm{C}$. A fter the reaction mixture had been stirred at rt for 30 min, a solution of trienone $5(400 \mathrm{mg}, 1.64 \mathrm{mmol})$ in dry THF $\left(4 \mathrm{~cm}^{3}\right)$ was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred at rt for 2 h . The reaction was quenched by the addition of water and the THF was evaporated off to give a residue, which was extracted with A cOEt. The extract was washed with brine, dried and evaporated off to afford a crude oil, which was dissolved with a mixture of AcOH-THF-water-NaOAc (5:2:2:1) and the reaction mixture was stirred at rt for 5 h and extracted with AcOEt. The extract was washed with brine, dried and evaporated to give a residue, which was purified by CC (AcOEthexane, 1:9). This afforded a mixture of geometrical isomers 8 and 9 ($335 \mathrm{mg}, 72 \%$) as a pale yellow oil, together with recovered starting material 5 ($95 \mathrm{mg}, 24 \%$). The isomers were separated by LPCC (AcOEt-hexane, 1:19) to give the more polar compound 8 and the less polar compound 9 each in a pure state, in the ratio $\sim 1: 1$.

11E-Isomer 8: $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1658(\mathrm{C}=0)$ and 1554 (C=C); $\lambda_{\text {max }}(E t O H) / n m 346 ; \delta_{H}(200 ~ M ~ H z ; ~ C D C l ~ 3) ~ 1.01(6 ~ H, ~ s, ~$ gem-M e), 1.70 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}$), 2.19 ($3 \mathrm{H}, \mathrm{s}, 13-\mathrm{M} \mathrm{e}$), $2.36(2 \mathrm{H}, \mathrm{t}-$ like, J $6,9 \mathrm{a}-\mathrm{H}_{2}$), $2.94\left(2 \mathrm{H}, \mathrm{m}, 11 \mathrm{a}-\mathrm{H}_{2}\right), 5.98$ and 6.02 (each 1 H , each s, 10- and $12-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,8-\mathrm{H})$ and $6.39(1 \mathrm{H}$, d, J 16, 7-H) (Found: M^{+}, 284.2133. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}$ requires M , 284.2138).

11Z-Isomer 9: $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1660 \quad(\mathrm{C}=0)$ and 1560 (C=C); $\lambda_{\text {max }}(E t O H) / n m 349 ; \delta_{H}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.01(6 \mathrm{H}, \mathrm{s}$, gem-M e), $1.71(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), $2.18(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{M} \mathrm{e}), 2.38(4 \mathrm{H}, \mathrm{m}$, 9a- and 11a-H ${ }_{2}$), $5.86(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 6.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,8-\mathrm{H})$, 6.40 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,7-\mathrm{H}$) and $7.55(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$ (Found: M^{+}, 284.2142).

E thyl ($\mathrm{E}, \mathrm{E}, \mathrm{Z} / \mathrm{E}$)-3-methyl-4- β-[2-(2,6,6-trimethylcyclohex-1enyl)ethenyl jcyclohex-2-enylidene\}out-2-enoate 10 and 11

To a solution of LDA (0.35 mmol , prepared from $0.049 \mathrm{~cm}^{3}$ of diisopropylamine and $0.219 \mathrm{~cm}^{3}$ of $1.60 \mathrm{~mol} \mathrm{dm}^{-3}$ BuLi) in dry THF ($1 \mathrm{~cm}^{3}$) was added a solution of ethyl trimethyIsilylacetate $\left(0.064 \mathrm{~cm}^{3}, 0.35 \mathrm{mmol}\right)$ in dry THF $\left(1 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. A fter the reaction mixture had been stirred at $-78^{\circ} \mathrm{C}$ for 15 min , a solution of tetraenone $8(20 \mathrm{mg}, 0.070 \mathrm{mmol})$ in dry THF $\left(2 \mathrm{~cm}^{3}\right)$ was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min at rt. The whole was concentrated to give a residue, which was purified by CC (AcOEt-hexane, 1:19) to afford a mixture of geometrical isomers $\mathbf{1 0}$ and $\mathbf{1 1}$ ($23 \mathrm{mg}, 92 \%$). The isomers were separated by PHPLC [LiChrosorb Si-60 ($7 \mu \mathrm{~m}$), $1 \times 25 \mathrm{~cm}$, $\mathrm{Et}_{2} \mathrm{O}$-hexane, 3:97] to give the less polar compound $\mathbf{1 0}$ and the more polar compound 11, each in a pure state and each as a pale yellow oil, in the ratio $\sim 1: 1$.

All-E-isomer 11: $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1709\left(\mathrm{CO}_{2} \mathrm{Et}\right)$ and 1571 (C=C); $\lambda_{\text {max }}(E t O H) / n m 355 ; \delta_{H}(200 ~ M ~ H z ; ~ C D C l ~ 3) ~ 1.01(6 ~ H, ~ s, ~$ gem-M e), $1.28\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.70(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $2.29(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 2.33$ and 2.60 (each $2 \mathrm{H}, \mathrm{t}$-like and $\mathrm{m}, \mathrm{J} 6$, 9a- and 11a- H_{2}), $4.15\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.72(1 \mathrm{H}, \mathrm{s}$, 14-H), 5.79 ($1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}$), $6.04(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 6.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $16.5,8-\mathrm{H})$ and $6.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5,7-\mathrm{H}) ; \delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ $1.01\left(6 \mathrm{H}, \mathrm{s}\right.$, gem-M e), $1.28\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.45$ (2 $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 6,2-\mathrm{H}_{2}\right), 1.59\left(2 \mathrm{H}\right.$, quintet, J $\left.6.5,3-\mathrm{H}_{2}\right), 1.70(3 \mathrm{H}, \mathrm{s}, 5-$ Me), $1.77\left(2 \mathrm{H}\right.$, quintet, J $\left.6,9 \mathrm{~b}-\mathrm{H}_{2}\right), 2.00\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6,4-\mathrm{H}_{2}\right), 2.29$ ($3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$), $2.33\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6,9 \mathrm{a}-\mathrm{H}_{2}\right), 2.58\left(2 \mathrm{H}, \mathrm{m}, 11 \mathrm{a}-\mathrm{H}_{2}\right)$, $4.15\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.72(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 5.78(1 \mathrm{H}, \mathrm{s}$, 12-H), 6.04 ($1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}$), 6.08 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 16, $8-\mathrm{H}$) and 6.23 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 16,7-\mathrm{H}) ; \delta_{\mathrm{c}}\left(125 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 14.39\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 19.22 (C-3), 19.82 (C-20), 21.73 (C-18), 22.41 (C-21), 24.50 (C19), 27.59 (C-22), 28.94 (1,1-gem-M e), 33.09 (C-4), 34.24 (C-1), $39.61(\mathrm{C}-2), 59.55\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 117.65(\mathrm{C}-14), 127.48(\mathrm{C}-7)$,
129.73 (C-12), 129.86 (C-5), 131.25 (C-10), 135.33 (C-8), 137.68 (C-6), 141.14 and 142.04 (C-9 and -11), 153.35 (C-13) and 167.21 (C-15) (Found: M^{+}, 354.2559. $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2}$ requires M , 354.2557).

13Z-I somer 10: $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1707\left(\mathrm{CO}_{2} \mathrm{Et}\right)$ and 1597 and 1570 (C=C); $\lambda_{\text {max }}\left(\right.$ (EtOH)/nm 358; $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz} \text { CDCl })_{3}$) 1.00 (6 H, s, gem-M e), $1.25\left(3 \mathrm{H}, \mathrm{t}\right.$, J 7, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.69(3 \mathrm{H}, \mathrm{s}, 5-$ Me), $2.10(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$), 2.31 and 2.52 (each 2 H , each t-like, J 5.5, 9a- and 11a- H_{2}), $4.13\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.61(1 \mathrm{H}$, s, $14-\mathrm{H}), 6.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,8-\mathrm{H}), 6.17(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 6.21(1 \mathrm{H}$, d, J $16,7-\mathrm{H}$) and $6.93(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}) ; \delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.01$ ($6 \mathrm{H}, \mathrm{s}$, gem-M e), $1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.69(3 \mathrm{H}, \mathrm{d}$, J 1, 5-Me), $1.77\left(2 \mathrm{H}\right.$, quintet, J $\left.6,9 b-\mathrm{H}_{2}\right), 2.10(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1$, 13-M e), 2.31 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6,9 a-\mathrm{H}_{2}$), $2.52\left(2 \mathrm{H}, \mathrm{m}, 11 \mathrm{a}-\mathrm{H}_{2}\right), 4.13$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.61(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 6.08(1 \mathrm{H}, \mathrm{d}$, J $16,8-\mathrm{H}), 6.17(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 6.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,7-\mathrm{H})$ and 6.93 ($1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 354.2556$).

($\mathrm{E}, \mathrm{E}, \mathrm{E}$)-3-M ethyl-4- $\mathbf{\beta}$-[2-(2,6,6-trimethylcyclohex-1-enyI)-ethenyl]cyclohex-2-enylidene 3out-2-enoic acid 3

A mixture of all-E-retinoate analogue 11 ($6.6 \mathrm{mg}, 0.019 \mathrm{mmol}$), ethanol ($0.5 \mathrm{~cm}^{3}$) and aq. $\mathrm{NaOH}\left(25 \% \mathrm{w} / \mathrm{w} ; 0.15 \mathrm{~cm}^{3}\right.$) was stirred at rt for 3 h and then at $50^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was acidified by the addition of dil. HCl and extracted with AcOEt. The extract was washed with brine, dried and evaporated to give a residue, which was purified by CC (A COEt-hexane, 1:4) to afford all-E-RA analogue 3 (274.9 $\mathrm{mg}, 81 \%$) as a pale yellow solid ($\mathrm{mp} 121-123^{\circ} \mathrm{C}$), $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3200-2500,1678\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and $1564(\mathrm{C}=\mathrm{C}) ; \lambda_{\text {max }}(\mathrm{EtOH}) /$ nm 353; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}\right.$ CDCl ${ }_{3}$) 1.01 (6 H , s, gem-M e), 1.70 (3 H , $\mathrm{s}, 5-\mathrm{Me}), 2.31(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$), 2.34 and 2.61 (each 2 H , each t-like, J 5, 9a- and 11a-H $)^{2}$, $5.75(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 5.82(1 \mathrm{H}, \mathrm{s}, 12-$ H), $6.05(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 6.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,8-\mathrm{H})$ and 6.26 (1 H, d, J 16, 7-H) (Found: M^{+}, 326.2237. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}$ requires M , 326.2244).

($\mathrm{E}, \mathrm{E}, \mathrm{Z}$)-3-M ethyl-4- β-[2-(2,6,6-trimethylcyclohex-1-enyl)ethenyl jcyclohex-2-enylidene but-2-enoic acid 12

In the same manner as described for the preparation of all-ERA analogue $\mathbf{3}$ from all-E-retinoate analogue 11, hydrolysis of $13 Z$-retinoate analogue $10(7.7 \mathrm{mg}, 0.022 \mathrm{mmol})$ by NaOH gave 13Z-RA analogue 12 ($6.5 \mathrm{mg}, 92 \%$) as a pale yellow amorphous solid, $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3200-2500,1674\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and 1593 and 1564 (C=C); $\lambda_{\text {max }}(\mathrm{EtOH}) / n m 345$ and $246 ; \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 1.01 ($6 \mathrm{H}, \mathrm{s}$, gem-M e), $1.70(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 2.13 ($3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$), 2.32 and 2.54 (each 2 H , each t-like, J 6 and $5,9 \mathrm{a}-\mathrm{H}_{2}$ and 11aH_{2}), $5.64(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 6.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5,8-\mathrm{H}), 6.18(1 \mathrm{H}, \mathrm{s}$, $10-\mathrm{H}), 6.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5,7-\mathrm{H})$ and $6.90(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H})$ (Found: $\left.\mathrm{M}^{+}, 326.2245\right)$.

Synthesis of $9 Z$-locked R A 4. 3-(1-M ethylpropoxy)-6-[hydroxy-(2,6,6-trimethylcyclohex-1-enyl)methyl jcyclohex-2-enone 14 To a solution of LDA (32.9 mmol , prepared from $4.60 \mathrm{~cm}^{3}$ of diisopropylamine and $20.2 \mathrm{~cm}^{3}$ of $1.63 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{BuLi}$) in dry THF ($14 \mathrm{~cm}^{3}$) was added a solution of 3 -(1-methylpropoxy)-cyclohex-2-enone ($6.15 \mathrm{~g}, 36.2 \mathrm{mmol}$) in dry THF ($14 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$. A fter the reaction mixture had been stirred at $-78^{\circ} \mathrm{C}$ for 30 min , a solution of β-cyclocitral 13 ($5.0 \mathrm{~g}, 32.9 \mathrm{mmol}$) in dry TH F ($10 \mathrm{~cm}^{3}$) was added at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched by addition of water. A fter evaporation off of the THF, the residue was extracted with ether. The extract was washed with brine, dried and evaporated to give a residue, which was purified by CC (AcOEt-hexane, 1:9) to afford the title compound 14 ($6.42 \mathrm{~g}, 61 \%$) as a pale yellow oil (Found: C, 74.80 ; H, 9.82\%; $\mathrm{M}, 320.2369 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.96 ; \mathrm{H}, 10.17 \% ; \mathrm{M}$, $320.2350)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420(\mathrm{OH})$, 1617sh ($\mathrm{C}=0$) and $1598(\mathrm{C}=\mathrm{C}) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3440(\mathrm{OH}), 1630(\mathrm{C}=0)$ and 1601 (C=C); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 253 ; \delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.91[6 \mathrm{H}, \mathrm{m}$, 1-M e and $\mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$], $1.13(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$), 1.23 and
1.26 [total 3 H , each d, J 6, $\mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$], $1.83(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{M} \mathrm{e}$), 2.39 ($1 \mathrm{H}, \mathrm{m}, 8 \mathrm{a}-\mathrm{H}$), 2.84 (1 H , octet, J 5,8 - H), 4.19 [1 $\left.\mathrm{H}, \mathrm{m}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 4.49(1 \mathrm{H}, \mathrm{br} s, 7-\mathrm{H}), 4.69(1 \mathrm{H}, \mathrm{s}$, OH) and $5.34(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 320.2369 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{M}, 320.2350$).

4-[H ydroxy-(2,6,6-trimethylcyclohex-1-enyl)methyl]-3-methyl-cyclohex-2-enone 15

To a solution of keto alcohol $\mathbf{1 4}(2.83 \mathrm{~g}, 8.85 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ was added a solution of methyllithium ($1.5 \mathrm{~mol} \mathrm{dm}^{-3}$; $17.7 \mathrm{~cm}^{3}, 26.6 \mathrm{mmol}$) in THF at $-78^{\circ} \mathrm{C}$. A fter the reaction mixture had been stirred at $-78^{\circ} \mathrm{C}$ for $70 \mathrm{~min},-50^{\circ} \mathrm{C}$ for 20 min and at $0^{\circ} \mathrm{C}$ for 20 min , it was treated with sulfuric acid (15% $\mathrm{w} / \mathrm{v} ; 10 \mathrm{~cm}^{3}$) and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for a further 20 min before being extracted with A cOEt. The extract was washed with brine, dried and evaporated to give a residue, which was purified by CC (A cOEt-hexane, 1:4) to provide the title compound 15 ($1.69 \mathrm{~g}, 60 \%$) as an oil (Found: C, 77.52; H , $9.82 \% ; \mathrm{M}^{+}, 262.1931 . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C, 77.82; H, 9.99\%; M , 262.1931); $v_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 3600\right.$ and $3440(\mathrm{OH})$ and 1658 ($\mathrm{C}=0$) ; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \mathrm{240;} \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.01$ and 1.11 (each 3 H , each s, gem-M e), $1.85(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}), 2.19(3 \mathrm{H}, \mathrm{s}, 9-$ Me), $2.51\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 17.5\right.$ and $\left.5,8^{\prime}-\mathrm{H}\right), 2.95(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 9$ and 5 , $8-\mathrm{H}), 4.43(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 9,7-\mathrm{H})$ and $5.91(1 \mathrm{H}, \mathrm{br}, 10-\mathrm{H})$.

(E) $)$ 3-M ethyl-4-[(2,6,6-trimethyIcyclohex-1-enyl)methylene]-cyclohex-2-enone 16

Triethylamine ($11.1 \mathrm{~cm}^{3}, 79.6 \mathrm{mmol}$), 4 -(dimethylamino)pyridine (DMAP) ($3.88 \mathrm{~g}, 31.8 \mathrm{mmol}$) and acetic anhydride ($3.0 \mathrm{~cm}^{3}, 31.8 \mathrm{mmol}$) were added to a solution of keto alcohol $15(4.17 \mathrm{~g}, 15.9 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at rt for 4 h . A fter being poured into water, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried and evaporated to give a residue, which was purified by CC (AcOEt-hexane, 1:6) to provide the acetate of compound $15(4.02 \mathrm{~g}, 83 \%)$ as an oil, $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1728(\mathrm{OAC})$ and $1660(\mathrm{C}=0)$; $\lambda_{\text {max }}(\mathrm{EtOH}) /$ nm 235; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.10$ and 1.14 (each 3 H , each s, gem-M e), 1.80 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 2.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OA} \mathrm{c}$), $2.05(3 \mathrm{H}, \mathrm{s}$, $9-\mathrm{Me}$), 2.27 and 2.54 (each 1 H , each $\mathrm{m}, 8^{\prime}-\mathrm{H}_{2}$), $2.99(1 \mathrm{H}$, dt , J $9.5,5,8-\mathrm{H}), 5.89(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$ and $5.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.5$, $7-\mathrm{H}$) (Found: $\mathrm{M}^{+}-\mathrm{OAC}, 245.1921 . \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}$ requires m / z, 245.1905).

A mixture of a solution of the acetate ($3.98 \mathrm{~g}, 13.1 \mathrm{mmol}$) in dry toluene ($5 \mathrm{~cm}^{3}$) and a solution of D BU ($3.98 \mathrm{~g}, 26.2 \mathrm{mmol}$) in dry toluene ($5 \mathrm{~cm}^{3}$) was refluxed for 1 h . A fter being cooled to rt , the mixture was evaporated to remove toluene to give a residue, which was purified by CC (AcOEt-hexane, 1:6) to afford the title compound $\mathbf{1 6}$ ($2.65 \mathrm{~g}, 83 \%$) as an oil (Found: C, 83.27; $\mathrm{H}, 10.17 \% ; \mathrm{M}^{+}$, 244.1837. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}$ requires C, $83.55 ; \mathrm{H}, 9.90 \%$; $\mathrm{M}, 244.1826$); $v_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 1654\right.$ ($\mathrm{C}=0$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 296; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}\right) 0.97(6 \mathrm{H}, \mathrm{br}$ s, gem-M e), $1.49(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}$), 2.10 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{M} \mathrm{e}$), 2.42 and 2.52 (each 2 H , each m, 8aand $\left.8 \mathrm{~b}-\mathrm{H}_{2}\right), 5.87(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$ and $6.40(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$; NOESY, see Scheme 2; $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{H} \mathrm{z}^{2}\right.$ CD Cl ${ }_{3}$) 19.8 (C-3), 21.1 ($9-\mathrm{M} \mathrm{e)} 21.9$, ($5-\mathrm{M} \mathrm{e}$), 27.3 (C-8a), 29.0 (gem-M e), 32.4 (C-4), 35.3 (C-1), 37.6 (C-8b), 39.5 (C-2), 127.1 (C-8), 129.9 (C-10), 131.3 (C-7), 135.7 and 136.7 (C-5 and -6), 156.3 (C-9) and 200.4 (C-11).

($\mathbf{E}, \mathrm{E} / \mathrm{Z}$)-3- $\beta-\mathrm{M}$ ethyl-4-[(2,6,6-trimethyIcyclohex-1-enyI)methyl-enejcyclohex-2-enylidene 3propan-2-one 17 and 18

In the same manner as described for the synthesis of tetraenones 8 and 9 from trienone 5, trienone $16(410 \mathrm{mg}, 1.68$ mmol) was converted into a mixture of the title compounds 17 and 18 ($197 \mathrm{mg}, 41 \%$) as a pale yellow oil and some starting material 16 ($113 \mathrm{mg}, 28 \%$) was recovered. The mixture of geometrical isomers was separated by PHPLC [L iChrosorb Si-60 $(7 \mu \mathrm{~m}), 1 \times 25 \mathrm{~cm}$, A cOEt-hexane, $3: 197$] to give the less polar compound $\mathbf{1 7}$ and the more polar compound $\mathbf{1 8}$ each in a pure state, in the ratio $\sim 1: 1$.

11E-Isomer 17: $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1659(\mathrm{C}=0)$ and 1562 ($\mathrm{C}=\mathrm{C}$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 339$ and 239; $\left.\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl})_{3}\right) 0.95$ ($6 \mathrm{H}, \mathrm{br}$ s, gem-M e), 1.46 (3 H, s, 5-M e), 2.01 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), $2.18(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 5.95$ and 5.97 (each 1 H , each $\mathrm{s}, 10-$ and $12-\mathrm{H}$) and $6.14(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$ (Found: M^{+}, 284.2137. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}$ requires $\mathrm{M}, 284.2138$).

11Z-Isomer 18: $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1662(\mathrm{C}=0)$ and 1579 (C=C); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 341 ; \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.95(6 \mathrm{H}, \mathrm{br}$ s, gem-M e), $1.45(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}), 2.04(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{M} \mathrm{e}), 2.17(3 \mathrm{H}, \mathrm{s}$, $13-\mathrm{M} \mathrm{e}), 5.82(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 6.18(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$ and $7.42(1 \mathrm{H}, \mathrm{s}$, 10-H) (Found: M ${ }^{+}, 284.2130$).

Ethyl ($\mathbf{E}, \mathrm{E}, \mathrm{Z} / \mathrm{E}$)-3-methyl-4- β-methyl-4-[(2,6,6-trimethyl-cyclohex-1-enyl) methylene]cyclohex-2-enylidene 3out-2-enoate 19 and 20

In the same manner as described for the preparation of retinoate analogues 10 and 11 from tetraenone 8, tetraenone 17 ($71 \mathrm{mg}, 0.25 \mathrm{mmol}$) was converted to a mixture of geometrical isomers 19 and 20 ($88 \mathrm{mg}, 100 \%$), which was separated by PH PLC [LiChrosorb Si-60 ($7 \mu \mathrm{~m}$), $1 \times 25 \mathrm{~cm}, \mathrm{Et}_{2} \mathrm{O}$-hexane, $3: 97$] to give the less polar compound 19 and the more polar compound $\mathbf{2 0}$, each in a pure state and each as a pale yellow oil, in the ratio $\sim 1: 1$.

9Z,13Z-Isomer 19: $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1709\left(\mathrm{CO}_{2} \mathrm{Et}\right)$ and 1597 and $1579(\mathrm{C}=\mathrm{C}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 348 ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ $0.95\left(6 \mathrm{H}\right.$, br s, gem-M e), $1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.46$ (3 H, s, $5-\mathrm{Me}$), 1.96 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), $2.08(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{M} \mathrm{e}), 4.13(2 \mathrm{H}$, $\left.\mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.61(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 6.02(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 6.11$ ($1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}$) and $6.89(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}) ; \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 0.95 ($6 \mathrm{H}, \mathrm{br}$ s, gem-M e), $1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.46 (3 $\mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 1.96 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$ e), 2.07 ($3 \mathrm{H}, \mathrm{s}, 13-\mathrm{M} \mathrm{e}$), $4.12(2 \mathrm{H}$, q, J 7, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.61(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 6.02(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 6.11$ ($1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}$) and $6.89(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 354.2567$. $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2}$ requires $\mathrm{M}, 354.2557$).
9Z,13E-I somer 20: $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1711\left(\mathrm{CO}_{2} \mathrm{Et}\right)$ and 1578 ($\mathrm{C}=\mathrm{C}$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 342 ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.94(6 \mathrm{H}$, br s , gem-M e), $1.27\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.47(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $1.97(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 2.28(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 4.15(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.68(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 5.76(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 5.97(1 \mathrm{H}$, $\mathrm{s}, 10-\mathrm{H})$ and $6.04(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}) ; \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.96(6 \mathrm{H}$, br s, gem-M e), $1.27\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.46(3 \mathrm{H}, \mathrm{s}, 5-$ Me), 1.97 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 2.28 ($3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$), 4.15 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.68(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 5.76(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 5.97(1 \mathrm{H}$, $\mathrm{s}, 10-\mathrm{H})$ and $6.04(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$ (Found: $\left.\mathrm{M}^{+}, 354.2549\right)$.

($\mathrm{E}, \mathrm{E}, \mathrm{E}$)-3-M ethyl-4- β-methyl-4-[2,6,6-trimethylcyclohex-1-enyl)methylene]cyclohex-2-enylidene 3but-2-enoic acid 4

 In the same manner as described for the preparation of all-ERA analogue $\mathbf{3}$ from all-E-retinoate analogue $\mathbf{1 1}$, hydrolysis of $9 Z, 13 \mathrm{E}$-retinoate analogue $20(3.5 \mathrm{mg}, 0.010 \mathrm{mmol})$ by NaOH yielded $9 Z, 13 \mathrm{E}-\mathrm{RA}$ analogue $4(3.3 \mathrm{mg}, 100 \%)$ as a pale yellow solid, mp 140-141 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3250-2500,1680\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and $1572(\mathrm{C}=\mathrm{C}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 334$ and $250 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 0.96(6 \mathrm{H}, \mathrm{br} \mathrm{s}$, gem-M e), $1.47(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.98(3 \mathrm{H}$, $\mathrm{s}, 9-\mathrm{Me}$), $2.30(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$), $5.72(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 5.79(1 \mathrm{H}, \mathrm{s}$, $12-\mathrm{H}), 5.98(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$ and $6.06(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$ (Found: M^{+}, 326.2240. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{M}, 326.2244$).
($\mathbf{E}, \mathrm{E}, \mathrm{Z}$)-3-M ethyl-4- β-methyl-4-[(2,6,6-trimethyIcyclohex-1-enyl)methylene]cyclohex-2-enylidene but-2-enoic acid 21

In the same manner as described for the preparation of all-ERA analogue 3 from all-E-retinoate analogue 11, hydrolysis of $9 Z, 13 Z$-retinoate analogue 19 ($5 \mathrm{mg}, 0.014 \mathrm{mmol}$) by NaOH provided $9 Z, 13 Z-$ R A analogue $21(4.2 \mathrm{mg}, 92 \%)$ as a pale yellow solid, $\mathrm{mp} 128-130^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3300-2400,1680$ $\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and $1580(\mathrm{C}=\mathrm{C}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 335 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 0.95(6 \mathrm{H}, \mathrm{brs}$, gem-M e), 1.46 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}$), 1.97 (3 H , s, $9-\mathrm{M} \mathrm{e}$), 2.11 ($3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$), $5.63(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}$), $6.05(1 \mathrm{H}, \mathrm{s}$, $10-\mathrm{H}), 6.11(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$ and $6.87(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H})$ (Found: M^{+}, 326.2236).

A cknowledgements

We thank Professors S. M asushige and S. K ato for the CAT assay experiments and valuable discussions.

References

1 Part 18, A. Wada, C. Tode, S. Hiraishi, Y. Tanaka, T. Ofusa and M . Ito, Synthesis, 1995, 1107.
2 H. Shichi, Biochemistry of Vision, A cademic Press, N ew York, 1983.
3 M. Petkovich, N. J. Brand, A. K rust and P. Chambon, N ature, 1987, 330, 444; V. Gifuere, E. S. Ong, P. Segui and R . M . Evans, Nature, 1987, 330, 624; N. Brand, M. Petkovich, A. K rust, P. Chambon H. deThe, A . M archio, P. Tiollais and A . D ejean, N ature, 1988, 332, 850.

4 D. J. M angelsdorf, E. S. Ong, J. A . D yck and R . M . Evans, N ature, 1990, 345, 224.
5 A. A. Levin, L. J. Sturzenbecker, S. K azmer, T. Bosakowski, C. H uselton, G. A llenby, J. Speck, C. K ratzeisen, M. Rosenberger, A . L ovey and J. F. Grippo, N ature, 1992, 355, 359; R. A. H eyman, D. J. M angelsdorf, J. A . D yck, R . B. Stein, G. Eichele, R . M . Evans and C. Thaller, Cell, 1992, 68, 397; D. J. M angelsdorf, S. A . K liewer, A. K akizuka, K. U mesono and R. M. Evans, Recent Prog. H orm. Res., 1993, 48, 99
6 Y. H ashimoto, H. K agechika and K. Shudo, Biochem. Biophys. Res C ommun., 1990, 166, 1300; C. A pfel, F. Bauer, M . Crettaz, L. Forni, M. K amber, F. K aufmann, P. LeM otte, W. Pirson and M. K laus, Proc. N atI. A cad. Sci. U SA, 1992, 89, 7129.

7 Y. K atsuta, Y. A oyama, H. Osone, A. Wada, S. U chiyama, T. K itamoto, S. M asushige, S. K ato and M . Ito, C hem. P harm. Bull., 1994, 42, 2659
8 A. Albeck, N. Friedman, M. Sheves and M. Ottolenghi, J. Am. C hem. Soc., 1986, 108, 4614
9 D. Seebach, Synthesis, 1969, 17; M. H. Park, T. Yamamoto and K . N akanishi, J. A m. C hem. Soc., 1989, 111, 4997.
10 T. Sato, Y. Wakahara, J. Otera and H. N ozaki, Tetrahedron, 1991, 47, 9773.
11 E. J. Corey and H. L. Pearce, J. A m. C hem. Soc., 1979, 101, 5841
12 G. Englert, H elv. Chim. Acta, 1975, 58, 2367; R. W. Curley, Jr. and J. W. Fowble, M agn. R eson. Chem., 1989, 27, 707.
13 S. Bhattacharya, K. D. Ridge, B. E. K nox and H. G. K horana, J. Biol. Chem., 1992, 267, 6763.

14 N. M üler and W. H offmann, Synthesis, 1975, 781.
15 J. J. Panouse and C. Sannié, B ull. Soc. Chim. Fr., 1956, 1272
16 V. Ramamurthy, T. T. Bopp and R. S. H. Liu, Tetrahedron Lett., 1972, 3915; R. S. H. Liu, J. P. Zingoni, A. K ini, M. Trammell, D. Chu, A. E. A sato and T. T. Bopp, J. Org. Chem., 1983, 48, 4817; A. T. Nakayama, T. T. Bopp and R. S. H. Liu, J. Org. Chem., 1984, 49, 3424; V. Ramamurthy, T. Tustin, C. C. Y au and R. S. H. Liu, Tetrahedron, 1975, 31, 193
17 E. J. Corey and D. Enders, C hem. Ber., 1978, 111, 1362.

Paper 6/06719K
Received 2nd O ctober 1996
A ccepted 17th D ecember 1996

